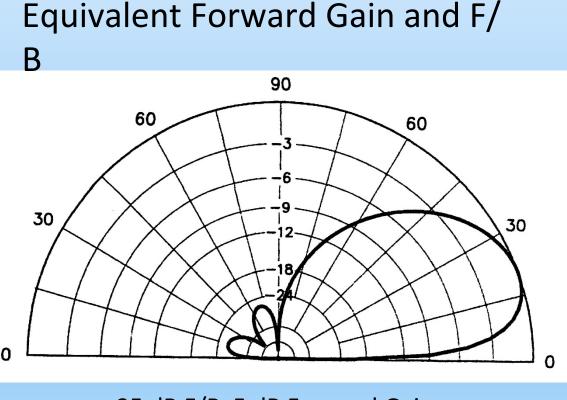
# A Five Element Parasitic Rotatable Vertical Yagi for 160 meters

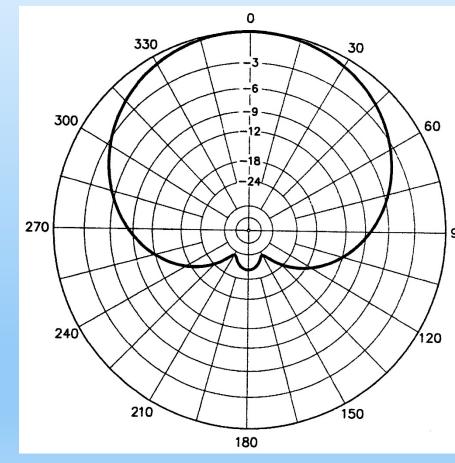
Joel Harrison, W5ZN 2018 Dayton Hamvention Antenna Forum

# The Need for a New TX Array

- 10 years perfecting RX arrays at W5ZN
- 260 DXCC countries confirmed but became stagnate
  - The countries needed are much more difficult to work
- Needed extra TX gain and directivity to advance my DX standings from Arkansas


#### The Search for the Right Array at W52

- Spent well over two years fretting over what to do
- Revisited the section on vertical arrays with parasitic elements in "Low Band DX'ing"
  - Chapter 13, Section 3.9, page 13-39 Fifth Edition
- Studied the design for about 2 weeks
  - Literally became obsessed with this design
- K3LR's version is described
- Traveled to K3LR to see his installation
- Further discussion with K3LR at Six Meter BBQ in Austin in Sept 2017
- Became convinced this was the perfect array for the W5ZN station


## Why a Vertical Yagi Array with Parasitic Elements Over a 4 Square?

- The array can be built around an existing single TX vertical
- Do not need full size elements
- Existing land area around the single TX vertical can be utilized
- Same basic gain and F/B is realized in 4 rotatable direction
- Very simple feed system. No phasing or complicated schemes. The existing matching network on my single vertical is all that is required
- Slightly smaller element footprint than 4 Square

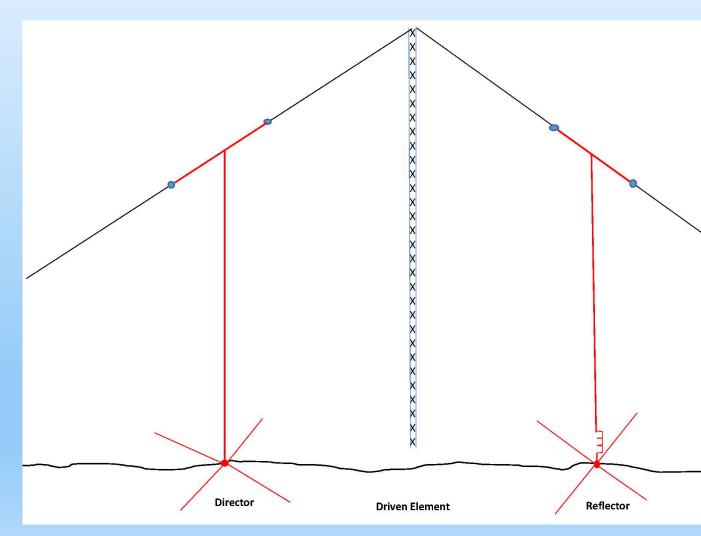
### Why a Vertical Yagi Array with Parasitic Elements Over a 4 Square?



25 dB F/B 5 dB Forward Gain

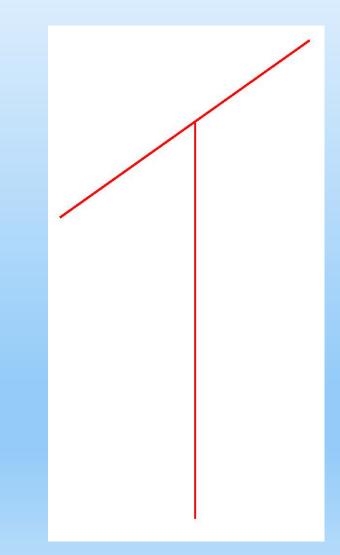


Horizontal Patter at 20 degrees elevation


#### The Vertical Yagi Array with Parasitic Elements

Popularized by Bill Hohnstein, KOHA

- Comprised of 3 or more vertical elements with one active driven element and the rest parasitic
- Currently in use at AA1K, VE3EJ, K3LR, NR5M & K9CT
  - AA1K has a 2<sup>nd</sup> Director to Europe on his array for a tad more gain

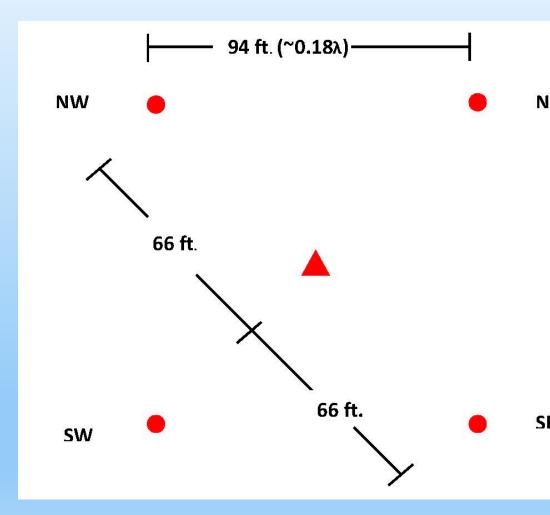

#### The Top Loaded Vertical Element

- Top loaded vertical parasitic elements are extremely effective
- Elements can be easily suspended with catenary ropes from the existing TX vertical



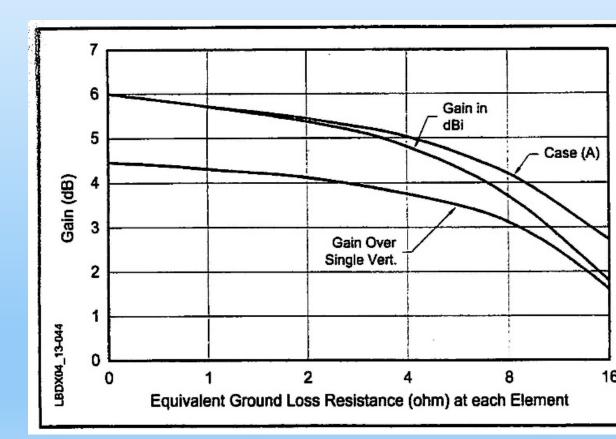
### The Top Loaded Vertical Element

- Resonant with a shorter vertical length
- No Far Field horizontal component as the top load wire is symmetrical to vertical wire.
- Sloping top loading wire is ~65 ft.
- Vertical wire is ~75 ft.

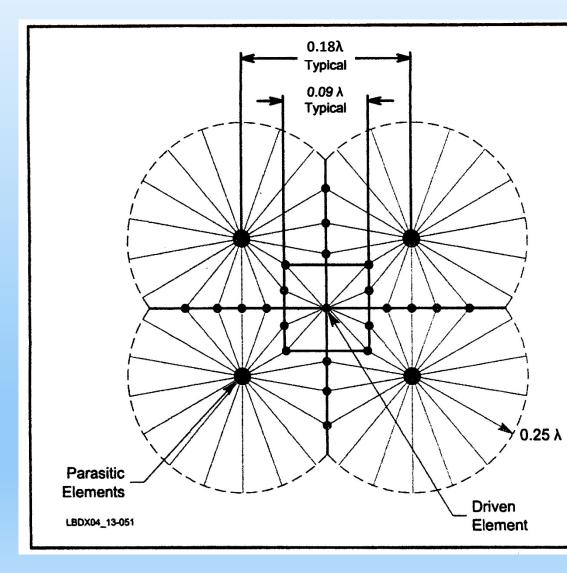



### Constructing the Array

- Construction effort organized in to 5 Phases
  - 1. Physical Layout
- 2. Radial System
- 3. Element Construction & Erection
- 4. Tuning
- 5. Parasitic Array Switching

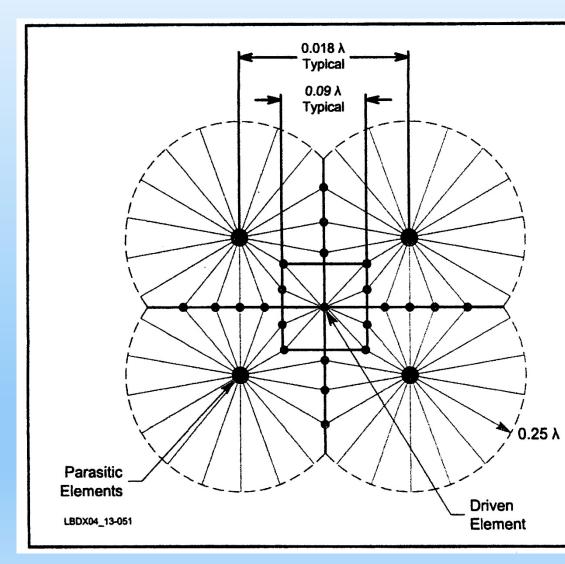

Physical Layout

- Very simple Process 30 mins or less
- Elements spaced 66 ft. from Driven Element
- 4 parasitic elements spaced 90 degrees around a driven element




- The most complicated and time consuming part of the project
  - It is MOST important!!!!
- Parasitic arrays have a greater impact from a poor ground system
- Elevated radials simply won't work
  - ON4UN's modeling shows significant pattern distortion
- With a phased array (e.g. 4 Square) current distribution is forced into each element
- Proper current distribution and thus gain in a parasitic element is impacted by ground resistance so an effective radial system is mandatory

- Gain of 3 element array as a function of ground loss resistance
- Case A is for a driven element with a fixed 1Ω loss resistance but with varying ground loss resistance at the parasitic elements



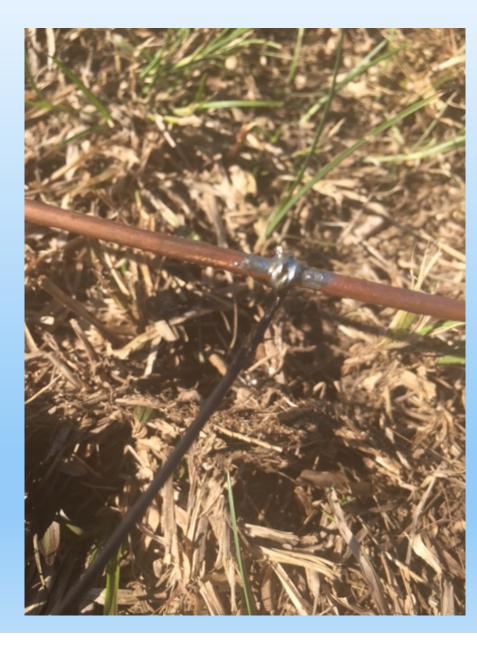

- 120 radials used under each element
- Radials are tied together at intersecting points
- 13.7 miles (22KM) of wire used in radial system



#### W5ZN construction procedure

- 1. Install 120 radials from driven element to 48 ft. perimeter wire
- 2. Install radials from each element that intersect 48 ft. diameter perimeter wire
- 3. Install all radials from each element that intersect the cross buss wire
- Install all remaining 1/4λ length radials to complete a total of 120 at each element




- 48 ft. diameter perimeter wire (#4 solid copper) around driven element
- 120 radials from the driven element tied to this perimeter wire



Perimeter wire laid in a 48 ft. diameter circle around driven element



Radial wires from the driven element are soldered to the perimeter wire



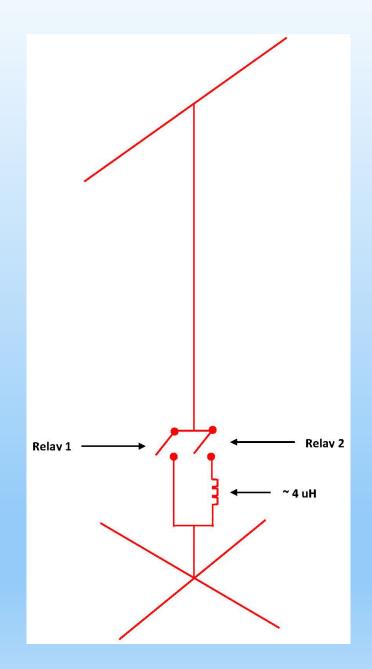
- Radial wires from each element that intersect the perimeter circle are soldered to the perimeter wire.
- All connections are then coated with liquid tape



- Some of the radial wires from an element.
- I do NOT bury radial wires!
- Mow grass very short (don't scalp) and lay radials on the ground. Secure with radial staples
- New grass growth in spring will cover the wires.



- You can use any sound method for attaching radials wires at the elements. I prefer the DX Engineering Radial Plates
- I crimp & solder the radial wires to ring terminal lugs then coat the joint with liquid tape.
- I use Penetrox to maintain a good connection over time and prevent galvanic corrosion with different metals of the plate and terminals




- Completed radial system under one element
- I use biodegradable staples to hold radials in place prior to new grass growth
- Total radial system area < 2 acres
- Total construction time for radial field 4 weeks

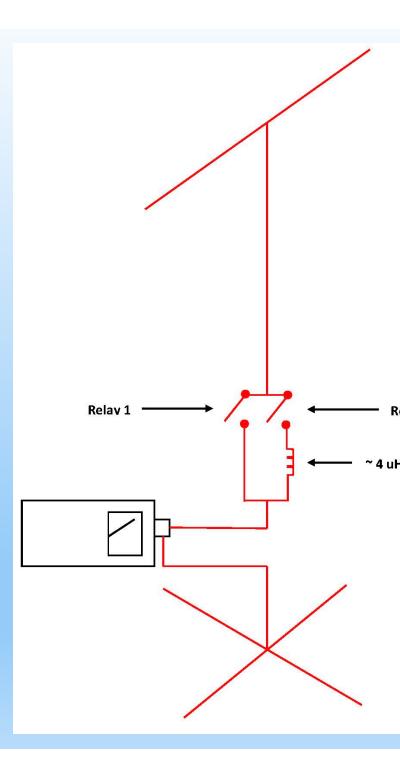


#### Element Construction

- Each element will need to function as a director and a reflector for different directions
- To accomplish this, the element is switched directly to the radial system as a director, or through a 4 uH inductor to function as a reflector



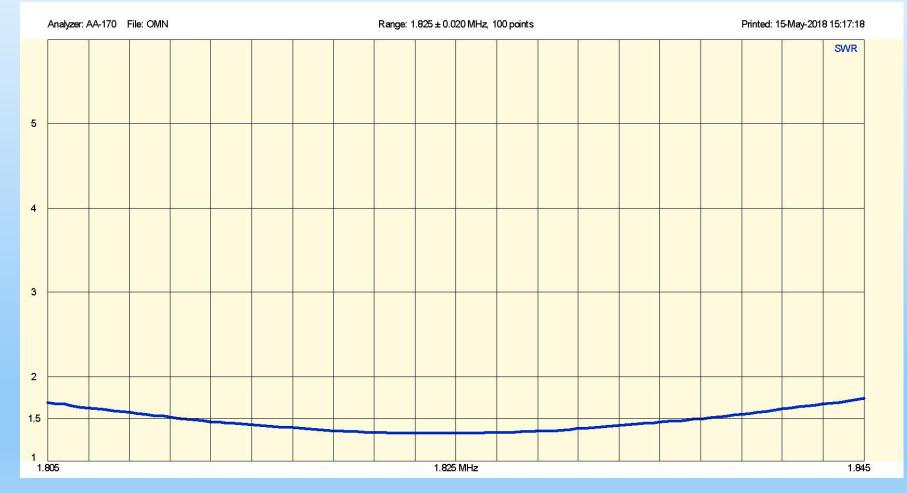
#### Element Construction & Erection


- Vertical & top load exact lengths are achieved by trial & error
- Build one element, erect it and then tune to the target frequency. The remaining elements should be the same.
- Use a rope and pulley on the first element unless you enjoy climbing 135 ft multiple times!!!!
- Distance from driven element to first insulator on the top loading segment will be approx. 45 ft.
- Distance from driven element to end tie point will be approx. 265 ft.

#### Element Construction

|           | ON4UN<br>Model | K3LR<br>System | W5ZN<br>Initial | W5ZN<br>Final |
|-----------|----------------|----------------|-----------------|---------------|
| Top Load  | 64.7 ft.       | 58.3 ft.       | 58.3 ft.        | 65 ft.        |
| Vertical  | 75.5 ft.       | 64.2 ft.       | 64.2 ft.        | 75 ft.        |
| Director  | 1935 KHz       | 1904 KHz       | 2070 KHz        | 1904 KHz      |
| Reflector | 1778 KHz       | 1800 KHz       | 1950 KHz        | 1800 KHz      |

## Tuning - Each Element


- Connect an antenna analyzer between the vertical element and the radial system
- Switch in the vertical wire directly to the radials and adjust the length to the desired director frequency
- Switch in the vertical wire and inductor to the radials and adjust the turns spacing on the inductor for the desired reflector frequency



## Tuning – As an Array

- The system has an "Omni" mode when all four parasitic elements are floating however there is a difference in feed point impedance characteristics when the array is active.
  - The Omni modes primary purpose is RX signal comparison
- Make final SWR tuning adjustments with the "array" active
- Should realize a very low 1.1:1 SWR with a 1.5:1 bandwidth of approximately 40 KHz

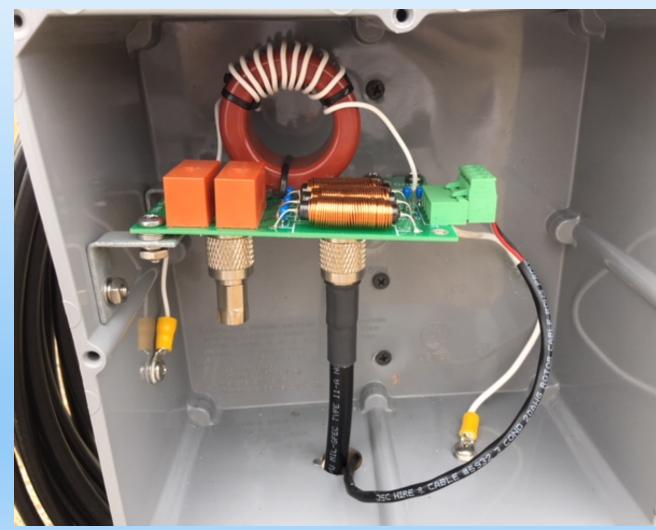
#### Tuning – As an Array



40 KHz Bandwidth Final Adjustment Produced a 1.1:1 SWR at 1.825 MHz

### Tuning – Fine Tweaking

- Drive out approximately 1 to 2 miles in each of the four directions with a low level signal source
- Adjust for maximum F/B Procedure:
  - 1. Drive to the opposite direction, e.g. SW for the NE direction
  - 2. Select the NE Direction for the array
  - 3. Transmit from the distant low level signal source
  - Adjust the turns spacing on the reflector element inductor for lowest signal (max F/B)


- Greg Ordy, W8WWV designed a circuit board for K3LR
- Once assembled it contains two relays and inductor



- A 5 position switchbox is used to switch array direction
- For one direction, relay 1 is energized on the forward director element and relay 2 on the rear reflector element
- Unused elements are not connected from their radials and "float"



- Switch board installed at one element
- Plastic box housing used at each parasitic element







#### What the Heck is That Roll of Cable?

- 160 meter  $1/4\lambda$  shorted stub
- The 160 array is close to W5ZN's 80 meter 4 Square array
- Invisible on 160 meters
  - Stub is invisible on 160 meters, appears as an "open"
- On 80 meters this is  $1/2\lambda$  and appears as a "short" at the feed point
- Eliminates/minimizes interaction between the two arrays

#### What the Heck is That Roll of Cable?

The Southeast 160 meter element is only 60 ft. from the northeast 80 meter 4 Square element



#### On-the-Air Results

- Realize 5 dB forward gain
- F/B~25 dB
- RBN indicates significant improvement over single vertical
- Significant improvement in pileups!
- 9MØW Spratly 160 meter operator Jeff, K1ZM:

"Your signal was better than MOST! About RST 339 which may not sound LOUD - but compared to all the others at RST 219, you were LOUD (HI HI)"

#### Acknowledgements

- Tim Duffy, K3LR
- Jon Zaimes, AA1K
- Larry Burke, K5RK